Environmental Risk Management System

Oslo, 27. September 2007

# **Experience from testing of EIF<sub>DD</sub>**

### **ERMS Users Group**

### Anne-Mette Hilmen Shell Technology Norway AS

Environmental Risk Management System

# **ERMS Users Group**

- ERMS JIP activity
- Testing and verification
- Identify strengths and weaknesses
- Recommendations for improvement of model
- User guidelines
- Training courses
- Discussion forum, sharing of experiences



Oslo, 27. September 2007











TOTAL

Eni











Environmental Risk Management System

#### Oslo, 27. September 2007

## Testing and verification by Users Group



Environmental Risk Management System

### **Inter-user tests**

- Variability among users
- User friendliness
- Bug identification
- Comparison of EIF from new versions against results from old version
- Improved understanding of the model by the users

ling section diamete Section length, m Washout factor, % Total mud discharge, ton Case 2 ling section diamete Section length, m 600 Nebut factor, % Total muticischarge ton 400 ormound in dad Amuntinto Calculated in rock IBR. 0.0100 Calculated hilino section dam Section length m Nehoutfactor 9 otal mud discharge ton Calculated LER1 Dill-chen Section length, m 600 Washout factor % Total mud discharge, ton 100 anna nd in dische Amuntintern Calculatedined 20 LLER.1 0.008 Drill-chem-2w%of the outtings in the discharge

Recommendations for model improvements

Case 1

Oslo, 27. September 2007

Environmental Risk Management System

### **Inter-user tests**

### Initiated measures to reduce user variability

- ✓ EIF utility
- ✓ Reduce user control in drilling module
- ✓ Guidelines
- ✓ Preparation of input data

#### Model improvements

- ✓ EIF utility
- ✓ Graphical presentation of results
- ✓ Duration
- ✓ Simplifications
- ✓ Bug fixing

#### Recommendations on future changes in reporting

- ✓ EIF max → EIF time-average
- ✓ Near-field module (PW)

Oslo, 27. September 2007

Environmental Risk Management System

# Management options Case study

- Real cases to identify strengths and weaknesses of the model
- 3 "real" cases
  - Exploration drilling with WBM
    - "yellow" chemical versus PLONOR chemicals and barite versus no discharge for deeper well sections
  - Production drilling with WBM
    - ✓ Wells drilled in parallel versus in series
  - Exploration drilling with WBM/OBM
    - WBM versus OBM, cuttings grain size, NaCl brine versus Barite, jack-up grease



Environmental Risk Management System

# Management options Case study

- Graphic presentation of results
- Change in grain size the dominant stressor in the sediment for two of the cases
  - Importance of this stress factor (versus toxicity, burial and oxygen deficit)?
  - Limited duration?
- Oxygen deficit dominating stressor in the sediment for one case
  - Due to one chemical that ends up in the sediment (large log Pow) where it biodegrades and consumes the oxygen

Environmental Risk Management System

# Sensitivity analyses

- Sensitivity to variations in input parameters and model settings
- Multivariate design and analysis
- Identification of most important parameters
- Does the model behave as expected?
- Recommendations for model improvements

Environmental Risk Management System

# Sensitivity analyses

#### Produced water

- Most important parameters for EIF<sub>PW</sub> is PNEC values and biodegradation rate
- Influence of analytical variance in compound classes
- EIF max versus EIF time-average
- Drilling discharges
  - Improvements and simplifications to model set-up for EIF<sub>DD</sub>
- Ongoing sensitivity analysis model behaves well

Environmental Risk Management System

#### Oslo, 27. September 2007

# **User guidelines**

File Edit View Map Data Setup Tools Output Window System Help

<u>ि</u> 🔍 🖓

Create Risk Map...

Stochastic Simulations

Update Current/Wind

**Compute Biological Effects** 

Environmental Impact Factor

Compute Volume over PNEC and swept area

- OLF EIF computational guidelines
- EIF utility
- Guidelines for handling of production chemicals in the water column in DREAM
- Users guideline for drilling discharges and model validation

DCBBB

Ð

10°00'W

200 km



EIF Setup...

Calculate EIF...

Close the Habitat Grid(s)

RECOMMENDED GUIDELINES

EIF COMPUTATIONAL GUIDELINES

A Manual for Standardised Modelling and Determination of the Environmental Impact Factor (EIF)

Environmental Risk Management System

#### Oslo, 27. September 2007

# **Training courses**

- 1-2 courses per year
- Next will be in November 2007



| () SINTEF                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | DREAM Training Course Overview<br>November, 2006<br>MEMW / DREAM Version 3.4                                                                                                                                                                                                                                                                                                                                                                   |
| Day<br>09:00<br>10:00<br>12:00<br>14:00 | 1<br>- 10:00 General concepts and structure of DREAM and water column EIF<br>-12:00: Installation, introduction to the software<br>Representation of the physical environment and physical-chemical processes in DREAM<br>Setting up, running, and viewing example scenarios<br>- 13:00 Lunch<br>- 17:00 Computation of water column EIF in DREAM<br>Using existing chemical compounds<br>Adding new process chemicals<br>Using the EIF Wizard |
| Day<br>09:00                            | 2<br>- 12:00 Introduction to the DREAM/ParTrack Drilling Discharge Model<br>Conceptual theoretical background<br>Utility for setting up a drilling discharge<br>- 13:00 Lunch<br>- 16:00 Example scenarios<br>Setting up and running simulations<br>Viewing simulation results<br>Post-processing for sediment and water column EIF results                                                                                                    |
| Note:<br><u>admi</u><br>instal          | Each participant should bring a PC with Windows XP (or newer), 200 Mb free space, and<br><u>nistrative privileges</u> . If the latter issue presents difficulties, the software should be pre-<br>led by your IT people prior to arrival at the course.                                                                                                                                                                                        |
| Loca<br>Proba                           | t <b>ion:</b><br>ibly at SINTEF SeaLab in Trondheim. Confirmation coming soon.                                                                                                                                                                                                                                                                                                                                                                 |

Environmental Risk Management System



- A number of Inter-user tests and sensitivity analyses have been performed
  - Improved user friendliness, model set-up simplifications
  - Model improvements
  - Recommendations on future changes in reporting of EIF's
  - Current sensitivity analysis  $\rightarrow$  model behaves well
  - Next inter-user test to be performed Q4 2007
- User Group activity will be continued



Oslo, 27. September 2007

Environmental Risk Management System

# Acknowledgement

The oil companies financing the ERMS program are acknowledged for financial support as well as scientific input during the program.

Contractors in the program have been: Akvaplan-niva, Battelle, MUST, RF-Akvamiljø, SINTEF, TNO and University of Oslo, with SINTEF as the co-ordinator of the program.







Eni







ConocoPhillips

ExonMobil